3D porous ZnO-SnS p-n heterojunction for visible light driven photocatalysis.

نویسندگان

  • Lijing Wang
  • Hongju Zhai
  • Gan Jin
  • Xiaoying Li
  • Chunwei Dong
  • Hao Zhang
  • Bai Yang
  • Haiming Xie
  • Haizhu Sun
چکیده

A novel two-step solution approach is put forward to design a unique three dimensional (3D) porous ZnO-SnS p-n heterojunction under mild conditions. This special 3D structure is induced via flower-like ZnO in which SnS serves as an efficient photosensitizer to improve the light harvesting across the whole visible range. A profound investigation of the mechanism shows that this 3D porous ZnO-SnS material effectively integrates the large surface area and high redox potential of ZnO, and wide visible-light harvesting of SnS, which largely promotes the transfer and separation rate of carriers. The systematic study on the active species generated during the photocatalysis illustrates that it is the photoelectrons, ˙OH and O2˙- that play the crucial role in the degradation of dyes. As a result, the noble-metal free photocatalyst degrades nearly 100% of rhodamine B (RhB) within 80 min and methylene blue (MB) in 40 min under visible light. The photocatalytic activity is 10 times higher than that of the pure flower-like ZnO and two times higher than that of the SnS material. Moreover, the photocatalyst is easily separated and reused at least four times without obvious change in efficiency and properties. This work provides an effective strategy for the synthesis of 3D porous p-n heterojunction semiconductor-based photocatalysts with low cost and low toxicity, which present promising applications in the field of solar energy storage and conversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Semiconductor Photocatalysis for Effective Elimination of Organic Contaminants from Sewage

The ZnO/SiO2 semiconductor nanophotocatalysis was synthesized via sol-gel method. Also, theplatinum particles were loaded on the ZnO/SiO2 nanoparticles by photoreductive method. Thestructure of catalyst was confirmed by X-ray diffraction (XRD), scanning electron microscopy(SEM) andfourier transform infrared spectroscopy (FT-IR). The XRD patterns of ZnO particlesdisplayed the nanoparticles have ...

متن کامل

Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods

Herein we explore the role of localized plasmonic heat generated by resonantly excited gold (Au) NPs on visible light driven photocatalysis process. Au NPs are deposited on the surface of vertically aligned zinc oxide nanorods (ZnO NRs). The localized heat generated by Au NPs under 532 nm continuous laser excitation (SPR excitation) was experimentally probed using Raman spectroscopy by followin...

متن کامل

Visible Light-Driven Photocatalytic Performance of N-Doped ZnO/g-C3N4 Nanocomposites

N-doped ZnO/g-C3N4 composites have been successfully prepared via a facile and cost-effective sol-gel method. The nanocomposites were systematically characterized by XRD, FE-SEM, HRTEM, FT-IR, XPS, and UV-vis DRS. The results indicated that compared with the pure N-doped ZnO, the absorption edge of binary N-doped ZnO/g-C3N4 shifted to a lower energy with increasing the visible-light absorption ...

متن کامل

Pd nanocube decoration onto flexible nanofibrous mats of coreshell polymerZnO nanofibers for visible light photocatalysis

Plasmonic enhancement for electron–hole separation efficiency and visible light photocatalysis was achieved by Pd nanocube decoration on a ZnO nanolayer coated onto electrospun polymeric (polyacrylonitrile (PAN)) nanofibers. Since exciton formation and sustainable electron–hole separation have a vital importance for realizing better solar energy in photovoltaic and photocatalytic devices, we ac...

متن کامل

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

Hydrothermally grown ZnO nanorods have inherent crystalline defects primarily due to oxygen vacancies that enhance optical absorption in the visible spectrum, opening up possibilities for visible light photocatalysis. Comparison of photocatalytic activity of ZnO nanorods and nanoparticle films on a test contaminant methylene blue with visible light irradiation at 72 kilolux (klx) showed that Zn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 25  شماره 

صفحات  -

تاریخ انتشار 2017